NOTER_PAGE: (2 . 0.41038771031455745)
NOTER_PAGE: (4 . 0.5730994152046783)
NOTER_PAGE: (6 . 0.21198830409356723)
NOTER_PAGE: (6 . 0.26973684210526316)
NOTER_PAGE: (8 . 0.3467446964155084)
NOTER_PAGE: (8 . 0.6437454279444038)
NOTER_PAGE: (9 . 0.30926331145149527)
NOTER_PAGE: (18 . 0.1485003657644477)
NOTER_PAGE: (18 . 0.3152889539136796)
NOTER_PAGE: (18 . 0.5910753474762254)
NOTER_PAGE: (18 . 0.7073884418434528)
NOTER_PAGE: (19 . 0.5273922571219869)
NOTER_PAGE: (19 . 0.5982468955441929)
NOTER_PAGE: (19 . 0.6216216216216216)
NOTER_PAGE: (19 . 0.716581446311176)
NOTER_PAGE: (19 . 0.7772096420745069)
NOTER_PAGE: (20 . 0.27578639356254575)
NOTER_PAGE: (20 . 0.640087783467447)
NOTER_PAGE: (21 . 0.4514952589350839)
NOTER_PAGE: (21 . 0.6148796498905909)
NOTER_PAGE: (22 . 0.246525237746891)
NOTER_PAGE: (22 . 0.7029992684711046)
NOTER_PAGE: (24 . 0.6217995610826628)
NOTER_PAGE: (25 . 0.17153284671532845)
NOTER_PAGE: (25 . 0.6978102189781021)
NOTER_PAGE: (27 . 0.3897810218978102)
NOTER_PAGE: (27 . 0.5408759124087591)
how meaningful is the concept of a protected class in this context? does it count if you've only inferred e.g. gender based on past purchasing patterns? how is any recommender system possible then? what if you haven't inferred it directly but effects are discriminatory?
NOTER_PAGE: (28 . 0.27066569129480617)
NOTER_PAGE: (28 . 0.3847841989758596)
NOTER_PAGE: (28 . 0.48354059985369424)
NOTER_PAGE: (28 . 0.5647403072421361)
NOTER_PAGE: (29 . 0.5284671532846715)
NOTER_PAGE: (29 . 0.664963503649635)
NOTER_PAGE: (29 . 0.7423357664233576)
NOTER_PAGE: (30 . 0.12435991221653256)
NOTER_PAGE: (30 . 0.31382589612289685)
NOTER_PAGE: (31 . 0.3773722627737226)
NOTER_PAGE: (33 . 0.47337709700948216)
NOTER_PAGE: (37 . 0.2961342086068563)
NOTER_PAGE: (44 . 0.7461594732991953)